With the rapid development and construction of large-scale wind power bases under the “Carbon Peaking and Carbon Neutrality Goals” target, traditional wind energy resource assessment methods typically rely on a limited amount of wind mast data, providing only limited wind resource analysis results. These methods are incapable of capturing the spatiotemporal distribution of wind energy resources throughout the entire base, thus failing to meet the construction requirements of wind power bases. In this study, the mesoscale WRF (The Weather Research and Forecasting Model) was employed for wind resource simulation in a large wind power base. Based on the terrain, meteorological observation data, and boundary conditions, high-resolution wind field simulation results were generated, providing more comprehensive spatiotemporal distribution information within the Ulanqab region’s wind power base. Through the analysis and comparison of measured data and simulation results at different horizontal resolutions, the model was evaluated. Taking the Ulanqab wind power base as an example, the WRF model was used to study the distribution patterns of key parameters, such as annual average wind speed, turbulence intensity, annual average wind power density, and wind direction. The results indicate that a 4 km horizontal resolution can simultaneously ensure the accuracy of wind speed and wind direction simulations, demonstrating good engineering applicability. The analysis of wind resource characteristics in the Ulanqab wind power base based on the mesoscale model provides reliable reference value and data support for its macro- and micro-siting.
Loading....